Multiple Positive Solutions for a Quasilinear Elliptic System Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions

نویسنده

  • Tsing-San Hsu
چکیده

Let Ω 0 be an-open bounded domain in R N ≥ 3 and p∗ pN/ N − p . We consider the following quasilinear elliptic system of two equations inW 0 Ω ×W 1,p 0 Ω : −Δpu λf x |u|q−2u α/ α β h x |u|α−2u|v|β,−Δpv μg x |v|q−2v β/ α β h x |u|α|v|β−2v, where λ, μ > 0, Δp denotes the p-Laplacian operator, 1 ≤ q < p < N,α, β > 1 satisfy p < α β ≤ p∗, and f, g, h are continuous functions on Ω which are somewhere positive but which may change sign on Ω. We establish the existence and multiplicity results of positive solutions to the above mentioned quasilinear elliptic system equations by variational methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

Multiple results for critical quasilinear elliptic systems involving concave-convex nonlinearities and sign-changing weight functions∗

This paper is devoted to study the multiplicity of nontrivial nonnegative or positive solutions to the following systems    −4pu = λa1(x)|u|q−2u + b(x)Fu(u, v), in Ω, −4pv = λa2(x)|v|q−2v + b(x)Fv(u, v), in Ω, u = v = 0, on ∂Ω, where Ω ⊂ R is a bounded domain with smooth boundary ∂Ω; 1 < q < p < N , p∗ = Np N−p ; 4pw = div(|∇w|p−2∇w) denotes the p-Laplacian operator; λ > 0 is a positive pa...

متن کامل

Multiple Positive Solutions for Semilinear Elliptic Equations in RN Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions

and Applied Analysis 3 Theorem 1.1. Assume that (A1) and (B1) hold. If λ ∈ 0,Λ0 , then Eλa,b admits at least one positive solution inH1 R . Associated with Eλa,b , we consider the energy functional Jλa,b inH1 R : Jλa,b u 1 2 ‖u‖H1 − λ q ∫ RN a x |u|dx − 1 p ∫

متن کامل

The Nehari manifold for indefinite semilinear elliptic systems involving critical exponent

In this paper, we study the combined effect of concave and convex nonlinearities on the number of solutions for an indefinite semilinear elliptic system ðEk;lÞ involving critical exponents and sign-changing weight functions. Using Nehari manifold, the system is proved to have at least two nontrivial nonnegative solutions when the pair of the parameters ðk;lÞ belongs to a certain subset of R. 20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012